International Journal of Zoology and Applied Biosciences Volume 9, Issue 1, pp: 9-11, 2024 https://doi.org/10.55126/ijzab.2024.v09.i01.002

http://www.ijzab.com

Research Article

XRD ANALYSIS OF SPIRULINA PLATENSIS MEDIATED TiO2NPs

¹Vasanth V, ² Senguttuvan K, ³Murugesh K.A., ^{4*}Nilav Ranjan Bora, ⁵Dipankar Brahma, ⁶Ashick Rajah R, ⁷Ranjith Kumar S, ⁸Navaneetha Krishnan S and ⁹Gajjala Nitish

1,2,3,4,5,7,9 Department of Sericulture, Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam - 641301, Tamil Nadu, India

Article History: Received 18th December 2023; Accepted 15th January 2024; Published 31st January 2024

ABSTRACT

This study explores the synthesis of titanium dioxide nanoparticles (TiO₂NPs) mediated by *Spirulina platensis* (*S. platensis*) and presents the corresponding X-ray diffraction (XRD) results. The analysis of the XRD patterns confirms the successful formation of crystalline nanoparticles, with distinct peaks aligning with the anatase phase of titanium dioxide. The utilization of *S. platensis* as a mediator not only facilitates the generation of TiO₂NPs but also introduces a biofriendly and sustainable dimension to the synthesis process. The anatase phase is known for its advantageous properties, including photocatalytic activity and stability, suggesting the potential of the synthesized nanoparticles for applications such as environmental remediation, catalysis, and photovoltaic devices. This study contributes valuable insights into the *S. platensis*-mediated synthesis of TiO₂NPs, emphasizing their promising prospects for diverse technological applications. Further research can delve into optimizing synthesis parameters to enhance nanoparticle properties, promoting their effective utilization in various fields.

Keywords: *Spirulina*, TiO₂, FT-IR, Nanoparticles.

INTRODUCTION

In recent years, researchers have been exploring various avenues to enhance silk production. Silkworms, specifically the mulberry silkworm (Bombyx mori), rely exclusively on mulberry leaves for their nutritional requirements. The quantity and quality of nutrients in mulberry leaves can vary based on environmental factors. fertilizer use, mulberry varieties, and cultivation practices. Traditionally, efforts to improve silk production have involved methods such as silkworm hybridization, artificial diets, and the application of phytojuvenoids. However, these approaches have yielded only modest improvements, and the sericulture economy has not seen significant progress. A promising development in the last decade has been the application of nanotechnology in sericulture. Nanotechnology, with its advanced applications in various fields like targeted drug delivery and molecular diagnosis, has found its way into agriculture, including sericulture. Researchers have explored nanotechnology to enhance silk yield, assess midgut flora, and improve the reproduction ability of silkworms.

Among the various uses of nanoparticles in sericulture, the focus on increasing silk production has gained momentum. Nanoparticles can be synthesized through different methods, with green synthesis being particularly highlighted. Green synthesis involves using plants, microorganisms, algae, and it is considered or environmentally safe, efficient, and profitable. Cyanobacteria, a group of photoautotrophic prokaryotes, have become a significant player in nanoparticle synthesis. In particular, the use of Spirulina platensis, blue - green algae, has been explored. S. platensis contains minerals, 18 amino acids, and vitamins, making it a valuable resource. sericulture, nanoparticles synthesized S. platensis have been shown to activate tissue metabolism and play a crucial role in promoting the biological parameters of the silk gland in silkworm larvae (Ni et al., 2015). In conclusion, the integration of nanotechnology

^{6,8} Department of Siliviculture & NRM, Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam - 641301, Tamil Nadu, India

into sericulture, especially through the environmentally friendly approach of green synthesis using cyanobacteria like *Spirulina platensis*, holds great potential for improving silk production and advancing the sericulture economy.

MATERIALS AND METHODS

Preparation of aqueous extraction of S. platensis

To obtain the aqueous extract of *S. platensis*, approximately 10g of finely ground *S. platensis* powder was heated in 100 ml of deionized water at 90°C for 45 minutes. Following this, the solution underwent filtration through Whatman filter paper No.1 to eliminate debris. The resulting clear, green-colored solution was then stored at 4-8°C for subsequent experiments (Some *et al.*, 2019).

Synthesis of Titanium dioxide nanoparticles

Spirulina mediated TiO2NPs were synthesized utilizing 0.01mM titanium dioxide and aqueous extract of *S. platensis* as bio-reductant and capping agent in a green synthesis. Aqueous extract of 20 ml was added to 80 mL of 0.01 M TiO2solution, which was kept at room temperature for 6 hours with continuous stirring in a hot plate magnetic stirrer. A change in colour to confirm the production of TiO2NPs. FTIR was used to characterize the green synthesized *Spirulina*-mediated TiO2NPs.

Characterization, X-Ray Diffraction (XRD)

The green synthesized *S. platensis* mediated TiO2NPs were characterized for their physical structure using X-ray powder diffractometer (Brukers AXS D8 advance diffractometer, Mumbai, India) equipped with a SSD-160 detector with nickel filter generating CuKα radiation having wavelength was 1.54Å. The analysis was conducted at 45kV, 20mA and with the scan angle (2θ) from 5° to 60°. The Segal equation was used to calculate the crystallinity index (Xc) as shown below:

Percenterystallinity =
$$\frac{I002 - Iam}{I002} \times 100$$

Where, I002 and Iam are the peak intensities at the crystalline and amorphous regions respectively. The phase development and crystallinity of *Spirulina* induced TiO2NPs were studied using X-Ray Diffraction, an analytical technique. Smart Lab was used to record the XRD pattern of produced *Spirulina*-mediated TiO2NPs. Powder X software was used to compute the lattice parameters. The Scherrer's equation was used to compute the particle size (d spacing value) of the sample (Sun *et al.*, 2000).

RESULTS AND DISCUSSION

The XRD analysis was done to confirm the crystalline nature of *S. platensis* mediated TiO2NPs. The fine sample

of nanoparticles was placed on the XRD grid, and the crystallinity was determined (Figure 1). The peaks appeared at 20 values ranging from 25 to 90°. The XRD pattern of S.platensis mediated TiO2NPs were observed at 27.79, 36.45, 41.57, 44.41, 54.65, 57.01, 63.11, 64.39, 69.22, 70.09, 76.88, 82.61, 84.47 and 88.01degree, it indicated the formation of good crystalline titanium dioxide with anatase phase shape. The prominent peak at 27.79 in the XRD pattern of green synthesized TiO2NPs was only connected with the crystallographicplane of TiO2 anatase. The final material's stoichiometry was highly dependent on the partial pressure used during the synthesis. As a result, synthesized TiO2NPs exhibit a variety of stoichiometries. X-Ray diffraction was used to evaluate the composition, structure and crystal phase of synthesized NPs. The present investigation S.platensis mediated TiO2NPs revealed the crystallinity patterns which correspond to the anatase phases of TiO2NPs. Similar results were also observed by Hariharan et al. (2017) who investigated the X-ray diffraction of TiO2NPs using X-rays with a wavelength of 1.54Å. The XRD pattern of Cynodon dactylon powder was analysed, and the diffraction peaks were perfectly assigned to anataseTiO2, indicating the samples crystalline structure. Rajesh kumar (2019) used XRD to confirm the crystalline nature and particle size of the Cassia fistula mediated TiO2NPs, where he observed the Face-centered cubic (FCC) structure of the NPs showing weak broadened wurtzite structure as previously reported by Vijayakumar et al. (2017).

CONCLUSION

In conclusion, the X-ray diffraction (XRD) results obtained from the synthesis of titanium dioxide nanoparticles (TiO₂NPs) using Spirulina platensis (S. platensis) as a mediator indicate the successful formation of crystalline nanoparticles. The prominent diffraction peaks observed in the XRD pattern correspond to the anatase phase of titanium dioxide. This crystalline structure is indicative of the high-quality and well-defined nature of the synthesized TiO2NPs.The utilization of S. platensis as a mediator in the synthesis process not only facilitated the formation of titanium dioxide nanoparticles but also suggests the potential bio-friendly and sustainable approach for nanoparticle synthesis. The anatase phase of TiO₂ is known for its favorable properties, including photocatalytic activity and stability, making synthesized nanoparticles promising candidates for various applications, such as environmental remediation, catalysis, and photovoltaic devices. Overall, the findings of this study contribute to the understanding of S. platensismediated TiO₂NP synthesis and highlight the potential of these nanoparticles for diverse technological applications. Further research can explore and optimize the synthesis parameters to enhance the properties and performance of the TiO₂NPs, paving the way for their practical implementation in various fields.

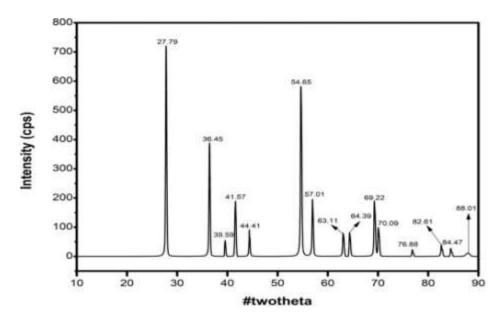


Figure 1.XRD pattern of S.platensis mediated TiO2NPs

ACKNOWLEDGMENT

The authors express sincere thanks to the Head of the Department of Sericulture, Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam - 641301, Tamil Nadu, India for the facilities provided to carry out this research work.

REFERENCES

Hariharan, D., Srinivasan, K., & Nehru, L. (2017). Synthesis and characterization of TiO2nanoparticles using cynodondactylon leaf extract for antibacterial and anticancer (A549Cell Lines) Activity. *Journal of Nanomedicine Research*, 5(6), 1-5.

Ni,M.,Li,F.,Tian,J.,Hu,J.,Zhang,H.,Xu,K., Li,B.(2015).Effects of Titaniumdioxidena noparticles on the synthesis of fibroin in silkworm (*Bombyx mori*). *Biological Trace Element Research*, 166(2), 225-235. Some, S., Bulut, O., Biswas, K., Kumar, A., Roy, A., Sen, I.K., Neog, K. (2019). Effect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morusindica L. V1 on *Bombyx mori* L. (Lepidoptera: Bombycidae). *Scientific Reports*, 9(1), 1-13.

Sun, S., Murray, C. B., Weller, D., Folks, L., & Moser, A. (2000). Monodisperse FePtna noparticles and ferromagnetic FePt nanocrystal superlattices. *Science*, 287(5460), 1989-1992.

Vijayakumar, S., Malaikozhundan, B., Shanthi, S., Vaseeharan, B., & Thajuddin, N. (2017). Control of biofilm forming clinically important bacteria by green synthesized ZnO nanoparticles and its ecotoxicity on Ceriodaphniacornuta. *Microbial Pathogenesis*, 107, 88-97.

This is an Open Access Journal / Article distributed under the terms of the Creative Commons Attribution License (CC BY-NC-ND 4.0) which permits Unrestricted use, Distribution, and Reproduction in any medium, Provided the original work is properly cited. All rights reserved.